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The 0 ( 5 ) •  U(1) electroweak gauge theory with two particle generations of 
quarks and leptons is considered. With spontaneous  symmetry breaking down 
to the 0(3)  level, the 't Hooft-Polyakov SO(3) monopole theory along with its 
triplet of  scalar fields is reproduced and developed to the extent necessary to 
establish the results. It is shown that the existence of  the monopole triggers the 
Cabibbo rotation of d and s along with the v e and u,~ flavors, which in turn 
results in the neutrino oscillations. The neutrino oscillation angle turns out to 
be the Cabibbo angle. Using the experimental data of  Baker et al., an upper  
limit is set on Am2--<l.3eV 2 (Am 2--- m~,-2 m~). Furthermore, it is exactly the 
Cabibbo angle in which the isovector ~b has to be rotated so as to spontaneously 
break the symmetry down to the 0(3)  level, together with, on the SO(3) sector, 
to the U(1) level. It turns out that the Weinberg angle is twice the Cabibbo 
angle, a result already note d elsewhere. 

1. I N T R O D U C T I O N  

In view of the continuing search for the magnetic monopoles, reported, 
e.g., in the recent work of Barish et aL (1987), Bartlet et al. (1987), and 
Ebisu and Watanabe (1987) and references therein, it is worthwhile search- 
ing for some theoretical evidence which could serve as a signal for the 
existence of the monopoles. In a previous paper (Samiullah, 1988) it was 
shown that the Cabibbo rotation of d and s quarks is triggered by the 
't Hooft-Polyakov monopole given by the SO(3) gauge theory. The present 
work indicates that the neutrino oscillations are also triggered by the SO(3) 
monopole. It is shown that the SO(3) monopole theory naturally follows 
from the 0(5)  x U(1) model and that with the explicit particle content the 
mere existence of a monopole triggers the Cabibbo rotation of d and s 
quarks along with the Ve and p~ neutrinos. 
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Regarding the 0 ( 5 ) x  U(1) electroweak theory, it suffices to say that 
the group 0(5)  is anomaly-free and economical in .the number of gauge 
bosons which we associate with each of its generators. Considering that 
data are analyzed with the assumption that the dominant contribution comes 
from one pair of neutrinos (i.e., coming back to the case of two neutrino 
flavors) (Guyot, 1983), I employ the four-dimensional spinorial representa- 
tion of the group 0(5)  which could accommodate two of the three gener- 
ations with the as yet undiscovered top quark. In Section 2, I briefly sketch 
the relevant mathematics. In Section 3, I discuss the 0 ( 5 ) x  U(1) model. 
In Section 4 the symmetry is broken down to the SO(3) level. In Section 
5 the usual SO(3) monopole theory is reproduced, 't t tooft 's  electromagnetic 
tensor is derived, magnetic current and charge are given, and their conserva- 
tion is shown. Section 6 utilizes the conventional procedure to establish the 
neutrino oscillations and the oscillation length. Section 7 deals with the 
triggering of the neutrino oscillations by the 't Hooft-Polyakov monopole. 
Section 8 discusses the results. 

2. THE RELEVANT MATHEMATICS 

To establish notation and indicate the particular representation used 
in this work I sketch here some of the relevant mathematics. The method 
of constructing the spinorial representations in higher dimensions for rota- 
tion groups is discussed by Brauer and Weyl (1935). Following their method, 
I construct the four-dimensional representation of the group 0(5) .  Take a 
set of five 4 x 4 Hermitian anticommuting matrices Fa: 

r*~=ro,  {Co, Cb} = 2~ob, a , b = l , . . . , 5  (1) 

and 

F, -- ~1~(1) ~" ~'1~(a~, F2 = 00~1~ x 00(2 2~, F3 = 00~'~ x 1 

F4 ---= O'~ 1) x 00~2), F 5 = 00(2 1) x 1 (2) 

The superscripts (1) and (2) refer to two distinct sets of Pauli matrices, the 
symbol x stands for the direct product, and 1 stands for the 2 x 2 unit matrix. 

The generators are given by 

Fob = --l iFaFb, a r b (3) 

The restriction is imposed due to the antisymmetry of  Fab. Explicitly written 
out, the matrices read (o)  (o 001 

F 1 ~--- r 2 = 
O" 1 0 ~ 0~ 

(0)  (0 003 
F4 = F5 = 

003 0 ' i x l  

o) 01) 
(4) _; 1) 
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The generators are given as follows: 

1 0 00_2) ! (  ~ 0-03) , El3 = 2 (_/0-1 i~ =1(--o"2 F12=2\  0 0 ] '  F14 2 \  0 

l 0  o) ! (  0-1 __00-1) , F23 = 2(_/0- 2 i0-2~ =1(0-1 F15=2k 0 0 ] '  F24 2 \  0 

F25=1(0-22\0 - ; 2 ) '  F34=1(i00-3-i0-3~0 ] '  F35-=~(?1 ; 1 )  

F45 = 1/0-3 0 ) 
2 \  0 --O'3 

(5) 

They satisfy the following commutation relation: 

[ F~b, Fed] = i ( 6acFbd -- abcF,,d + abdFac -- 6 adFbc ) (6) 
forming a Lie algebra. 

It is convenient to consider the algebra in a different basis 

{F~,/=45, FT}, i = 1, 2, 3 (7) 

defined as follows: 

1=1 : F23, F2 = F,3, F3 = F,2 (8) 

F~ = F14 -t- iF15 , F ~  = F24+ iF2~, F3 = F34 + iF35 (9) 
Among the above set of generators using equation (6), in particular, 

the following commutation relations can be established: 

[F?, F~] = +2F4s (i not summed) 

[F45 , FT] = +F7 (10) 

[F45 , F/] = 0 (11) 

[F~, F3] = i%kFk (12) 
From equation (10) we see that for every value of i (= 1, 2, 3) the set of 
generators {F45, F~:} and, from equation (12), the other one, i.e., {F~}, form 
su(2) subalgebras. Since in equations (13) the charge operator is defined 
using the generator F45, equations (10) and (11) indicate that F~ and F~ 
are the eigenvectors of the charge operator with the eigenvalues 0 and +1, 
respectively, the charge is invariant under the group 0(5), and eventually 
under the larger group 0(5) x U(1). 

3. THE O(5)x  U(1) MODEL 

The present work develops the electroweak theory using the four- 
dimensional spinorial representation of the group O(5) to which the left- 
handed quark and lepton multiplets QT= (u, d, s, C)L and r L L : 
(re, e,/z, ~'~)L are assigned, whereas the right-handed particles UR, dR, SR, 
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CR, en, tXn are taken to be the singlets of the group. The model has three 
sets of gauge bosons: (1) analogs of the Glashow (1961), Weinberg (1967), 
and Salam (1968) (GWS) model, (2) additional charged gauge bosons as 
compared to the GWS model, and (3) a set of three neutral gauge bosons. 

This model has ten gauge fields W~j (i < j  = 1 , . . . ,  5) and a singlet one 
transforming as 0(5)  and U(1) generators, respectively. Table I gives the 
eigenvalues of the operators F45 and Fo along with their charges for the 
leptons and quarks. 

The eigenvalues Y45 of the operator F45 for the right-handed particles 
UR, dR, SR, Cn, eR, tZR are taken to be zero, as they are the singlets and do 
not belong to the four-dimensional representation of the group 0(5) .  In 
terms of the 0(5)  x U(1) generators, the charge operator is given as 

Q= F45+�89 (13) 

Because of equations (8) and (9), it is possible to define a basis for the 
gauge bosons such that in the Lagrangian (19) certain combinations of  the 
gauge fields, for instance (1/~/2)( 24 �9 25 W .  + t W .  ), can be universally coupled 
to the charge currents such as u7" (1 /2 ) (1+  3~5)d, c3~"(1/2)(1+ 3,5)s rather 
than the separate ones W~ 4 and W~ 5. 

We define 

Fc = F,2, FD = F,3, F~ = 1=23, FF = F45 
(14) 

• 1 • 1 1 • 

The corresponding basis for the gauge fields is taken to be 

C u = W~ 2, D .  = W 13 , /~p, = W ~  3 , Vp, ~-- W 25 

i 
• W .  ~ iW~ 5) (15) U ,  t W.  ), v~ = + / 2  ( 14 . IS • W~ q: = ~ ( 34 

1 24 iW~5) 

Table I 

Leptons Quarks 

Pe, L eL, R Id'L,R II~,L UL, R dL, n SL, R CL, R 

Q 0 -1 -1 0 2/3 -1/3 -1/3 2/3 
Y45 1/2 -1/2,0 -1/2,0 1/2 1/2,0 -1/2,0 -1/2,0 1/2,0 
Yo -1 - 1 , - 2  - 1 , - 2  -1 1/3,4/3 1/3,-2/3 1/3,-2/3 1/3,4/3 
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Denoting the gauge couplings for the groups 0(5)  by g and for U(1) by 
(1/2)g',  we can express the coupling of the fermion currents (0  representing 
both the quark and the lepton fields) to the gauge bosons [with ~ taken to 
be the Dirac conjugate of  a and introducing the abbreviations aL = 
(1/2)(1 + yS)a, aR = (1/2)(1 -- yS)a, &r~b--> ~y~(1/2)(1 + yS)b] by the fol- 
lowing interaction Lagrangian 

Li.t = g ~ (~Ly~'F~W~6L) 
i<j 

1 , 1 - ~ 0 - -  ~ 0 W O s L . ~ _ e L ~ l . Z W O c L )  -F5g[{5(UL"/ W~,UL+dLY W~dLq-gLy ~ 

- t1. 0 - ~ 0 - tz 0 
--(~eLYgVeL + e L y  W~eL +tZLT WM~L + VgLT WgVgL)} 

- p. 4 0 -- 1.L2 - ~ 2  0 - p. 4 0 
+{(Uey ~W~,uL--dLT ~dL--SLT 5W~SLq'CL'y ~W~CL) 

--2(ORT~'WOeR +/2Ry~'WO/z.)}] (16) 

Furthermore, defining 

(17) 

J~,l = (fiLy"UL -- dL yg dL -- gL y~ SL + ~L y"  CL 

- -  eL  y ' ~ e L  - -  ~LL y~U~L -1- ~eL')/P'PeL + ~'~ yP~IJ~L ) (18) 

the interaction Lagrangian can be recast as follows: 

Lint=g, WOS.(em)+�89 , o  -- g W ~ ) J . , l  

+ lg% (~L3,~UL _ d-Ly~,dL + gLy.SL _ OL~/~CL 

- - ~ L . } / ~ e L - [ - # L T P ' [ & L -  ~I,~L Tt~I~I~L + ~eL T ~ l T  eL)  

+ �89 ( I~L'y~CL ~- d L ' ~ S L  - -  S L ' y ~ d L  --  CL'~P'I.,IL "}- ~eL'~ p~ l~la. L 

+ �89 (~3L3/~'CL -- dc3'"SL -- gLY~'aL -- eL3'~'UL 

+ ~LY"P~L - eCy"tZL - eLy"eL  + ~.Ly"Ve,)  (19) 

At this stage it is relevant to mention that we work here, conventionally, in 
the Prasad-Sommerfield (1975) limit, in which we do not give the potential 
explicitly but only specify that it gives to the scalar fields in the ground 
state a nonvanishing vacuum expectation value. The nature of  the vacuum 
expectation value determines the unbroken subgroup of the bigger one. 
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4. THE SYMMETRY BREAKING 

To reproduce the SO(3) theory of the magnetic monopole, we break 
the O(5)• U(1) symmetry spontaneously down to the O(3) level in two 
stages. First we break the symmetry to the 0(4) level by employing a 
complex scalar field r = cb and its complex conjugate r = r and then a 
real scalar field Ca (Higgs) to the 0(3) level. 

The real Higgs coupling is given by Lie (1974) as 

L w r  ' . . . .  = 2(O~.~bi - gWu,kCk)(O. .r  -- gW. , , r  ) (20) 

The complex Higgs are coupled in the following way: 

= ~(0.r - gW.,kChk -- ig ' /2  W ~ 1 6 2  * Lw~bcomple x 1 

X (Olx(~i - -  g W l ~ i l ~ l  - -  i g ' / 2  W~ ( 2 1 )  

We choose the following ground-state expectation values 

(~)a) : ~ i 4 V 4 ,  (r = (r 6~5 V5 (22) 

where V4 and V5 are constants. 
Substituting the expectation values of cb and r in equation (21), we 

find 

VNg2([ w IJ+Iw, A2+Iw.512+Iw,.51 =) + V~g'2/4  w ~ (23) 

On the other hand, substituting the expectation value of Ca in equation 
(20), we get 

V g=(I w,.4l= + l + l w,  sl= + l w,  5l =) (24) 

With V4 = V5 = V, adding the relations (23) and (24) and using the definitions 
(15), after the first and the second stage of symmetry breaking, the boson 
mass term is given as 

l 2 . r 2 [ . r + U ~ _ ~ V . V . ~ _  + - I 2 + W .  + z F .  + g,2/g2 wO2) (25) ~g v t u~. W. 
• • • 

From equation (25) we notice that U.,  V., W.,  F.  and W~ have acquired 
masses. Since the generators F~2, F13 and/=23 remain unbroken as such, the 
corresponding particles C., D. and E. are massless; we also notice that 
they are neutral. From (12) we learn that the generators F12, F~3 and F23 
form an 0(3) group and hence the symmetry is reduced to the 0(3) level. 
Now our theory contains an SO(3) group and a triplet of Higgs scalars ~b ~, 
Cb and r This scenario is exactly the starting point of the 't Hooft- 
Polyakov monopole theory; the difference is that at the SO(3) sector the 
present theory employs the five-dimensional representation, in contrast to 
the usual three-dimensional one. 
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5. THE SO(3)  M O N O P O L E  T H E O R Y  

At the SO(3) sector equipped with a triplet of Higgs scalars we can 
write the relevant Lagrangian as follows: 

L=-~G~ '~ .  (~u; +�89 - D ~ -  V(4~) (26) 

where G ~  is the gauge-invariant tensor, for the non-Abelian group SO(3); 
it is defined by 

G~=O~W~-O~ff '~ +gVC~x l,vr (27) 

and 4~ has a covariant derivative given by 

D#;=o~6 + g~r x 6 (28) 

its components being 6 a, 6 b and 6 c. 
We now specify the potential as 

V(~) = -1A ( 6 2 -  a 2) (29) 

which, at r >> a, in Higgs vacuum, defined in equations (34) and (35) yields 
~2= a 2. For this sector the equations of motion are given as follows: 

D~(~ ~v = g~ x D~'q5 (30) 

D~D~d~ = -A6(q~2- a 2) (31) 

The above equations in component form read 

( D~G"~), = --geijkqbk( O~6 )k (32) 

(D~'Duth), = -Athi(~ 2 - a 2) (33) 

We say that the fields in a certain region of space-time are in the Higgs 
vacuum if the equations 

(G~O) ,  = 0 (34) 

(D~6),  = 0 (35) 

are satisfied. Furthermore, we make the conventional assumption that any 
finite-energy solution, except in a finite number of compact localized regions 
which we associate with the magnetic monopoles, at large distances, satisfies 
equations (34) and (35). For a given ~, outside the monopole regions in 
the Higgs vacuum the general form of W, is given by Corrigan et al. (1976) 
as 

i ,~. 1 - - 1 = ~ g  6 x 0~q5 +-q~A" a (36) 
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or equivalently one gets 

F "~ = f .  ( ~  (40) 
a 

From equation (28) we note that in the direction where 4~ obtains a constant 
value in the Higgs vacuum we get 

O~F ~ = 0 and 0~ *F  ~'~ = 0 (41) 

where *F  ~'" is the dual of the field tensor F "~ defined as 

* F ~ = 1 / 2 e ~ p ~  Fp~ 

e ~'~p~ being the completely antisymmetric unit tensor. With 

F Oi = - E  i and F/j : --Eijk B k  (42) 

where /~ and /~ are the electric and magnetic fields; respectively, we 
recognize (41) as the Maxwell equations. Defining & / a = 4 ) ,  one can 
reexpress equation (38) as 

F t ' ~ = O " A ~ - O ~ A " + I ~  �9 (o"~ x o ~ ) =  & �9 G"~ (43) 
g 

which in component form becomes 

F "~'= OVA " - O ~ A "  + l % k g i  O~(a j 0 ~  k (44) 
g 

Equation (44) is 't Hooft 's "electromagnetic" tensor. It may be remarked 
that the field equations (32) and (33) are second-order nonlinear coupled 
partial differential equations and finding a general solution of  these 
equations is an extremely difficult task. However, as an example of its 
usefulness, 't Hooft circumvented the difficulty of solving these equations 
by employing a static, spherically symmetric ansatz, namely 

(Wo)~ = 0, ( W ~ ) ~ = e ~ j x J [ 1 - K ( r ) ] / g r  z 
(45) 

~p~ x ~ H ( r ) / g r  2, r 2 2 2 ---- = X l + X 2 + X ~  

1 3 6 2  

where A ~ is arbitrary. From (36) with d~/a = & we find 

a ~" = ~ .  ff'~ = q~iWi~ (37) 

Defining 

1 
F ~ = - -  (b. ( O ~  x 0 ~c~) + O~A ~ - O~A ~ (38) a3g  

it can be easily checked that the following equation is derivable: 

~ " ~  : 1 6 F " ~  (39) 
a 
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In the Prasad-Sommerfield limit, equation (27) has an explicit solution 
(see, for example, Marciano, 1978): 

K ( r )  = gar/s inh(gar);  H ( r )  = gar coth(gar) - 1 (46) 

Equations (44)-(46) lead to 

F 0 = - - e i j k x k / g r  3 (47) 

which corresponds to the magnetic field of a point monopole with the 
magnetic charge 1/g. 

The topological nature of this magnetic charge was demonstrated by 
Arafune et al. (1975). From equation (44) they noted that if A.  is free of 
string singularities, one can define the magnetic current as 

1 0~q~ a ~ 0 ~  * K .  : O  ~ *F.~ :~ge.~,~eab~ 0"~ b (48) 

This current is conserved 

The corresponding charge 

yields 

0" *K.  : 0 (49) 

11 1 M = - -  K o  d 3 x  = -  
47r g 

M : 0  (50) 

and hence it is also conserved. 

6. THE NEUTRINO OSCILLATIONS 

To put the present work in the proper perspective, I briefly recall here 
some of the relevant work on neutrino oscillations (for example, see 
Commins and Bucksbaum, 1983). Define the states veo and p~e as the 
following superposition of the neutrinos Ve and v~: 

veo = cos 0 ve + sin 0 v.  
(51) 

v.O = -s in  0 ve +cos 0 v. 

Consider that the neutrinos Ve and v. are formed at time t = 0 in the states 
re(O) and v.(O), respectively, and have the time evolution given by 

Ire (t)) = exp ( -  iEve t /h  )] ve (0)) 
(52) 

I p. (t)) = e x p ( - i E p f l / h ) l  v~ (0)) 
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With P~ = P~ = P, we have 

E~ e = ( p2e+ m 2ve/]1/2 - - - -  ,(P2+ m 2~,e~]1/2 
(53) pe + m  2 ]~ /2=(pe+m2 ]1/2 

Equation (51) becomes 

]Veo(t)) = exp ( - iE~yh) l ve (O) )  cos 0 +exp(-iE~//~)l,,.(O)) sin 0 (54) 

This can be written as 

[veo (t)) = {exp( -  iE~ t / h )  cos 2 0 + e x p ( - i E ~ t / h )  sin 20}]PeO (0)) 

+COS 0 sin O{- iEo / /h ) -exp( - iE~o t /h ) } lV , ,o (O) )  (55) 

The probabili ty for a neutrino originally in the state I Veo) to be in the state 
IV.o) at time t is given by 

P( leo ~ V.o) = ](v~lv~(t))] = 

= cos 2 0 sin 2 0 ]exp(-  i E ~ t / h  ) - e x p ( -  iE~ot/h )12 

=�89 sin e 20 { 1 - c o s  0 ( E ~ . - E ~ ) t / h }  (56) 

I f  a neutrino beam travels a distance R in time t, putting R = ct and assuming 
P >> myo, m~., we can rewrite equation (56) as 

1 2 (  m2--m~c2)  
P(veo~-+V~o)='~sin 20 1 - c o s  0 ~ 2p ~ R (57) 

The neutrino oscillation length is defined by the equation 

2 2 c 2 2~rR rn,,,~-rn,,~ R (58) 
2p h L 

where L is the oscillation length; equation (58) yields 

4~r~p 
L =  m2 _ m2 )c 2 (59) 

v t z  v e / 

As already remarked in Section 1, in view of the fact that usually three 
neutrino flavors data are analyzed assuming that the dominant contribution 
comes only from one pair of  neutrinos, even a detailed calculation would 
lead to the same result as given in equations (57) and (59). 

7. TRIGGERING OF THE NEUTRINO OSCILLATIONS 

Inserting (37) in (38) in a gauge where Og assumes a constant value, 
we obtain 

A .  . 

-0~(~b W~) (60) 
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From equation (60) we notice that the gauge fields W~, W~ and W~ 3, 
which in view of equation (12) transform as a SO(3) isovector, are rotated 
in the direction of ~b, where it has a constant value. On the other hand, we 
have already remarked that when ~ takes a constant value, it is in the Higgs 
vacuum and breaks the 0(5) x U(1) symmetry spontaneousl~ down to the 
SO(3) level. Furthermore, from equation (60) we notice that ~b, at the SO(3) 
sector, also breaks the symmetry down to U(1). Consistency demands that 
any other structures existing in the theory, such as isodoublets, isotriplets, 
etc., should be rotated appropriately. 

A 2 • 2 unitary unimodular matrix corresponding to a three-dimensional 
rotation by an angle 20 around a vector ~ with ~ being the Pauli matrices 
is given by 

UR = exp(~ 20t~. ~ )  (61) 

The set of all such 2 • 2 matrices forms a SU(2) subgroup. For simplicity, 
if we choose the axis of rotation as the y axis, equation (61) yields the matrix 

(cos 0 - s in  0~ (62) 
Un = \ sin O c o s 0 /  

To a unitary matrix U e SU(2) there corresponds in three dimensions 
a unique rotation matrix R(U)  c SO(3) given by the relation 

Ro(U)  = 1 Tr( U*o-, U%) (63) 

Explicitly written out, it reads 

1 (64) 

\ s in  20 0 cos 2 0 ]  

Whence to every set {A, B} of matrices A ~ SU(2) and B ~ SU(2) belonging 
to two different groups there exists a definite transformation A~ SO(4) 
satisfying the relation 

A ~  = �89 Tr( ~'~A zt3B *) (65) 

where 

z~ = (1, io-i) for a = (0, i) (66) 

= (  cos0 s i n 0 ]  (67) 
A = B  k - s i n 0  cos0 ]  

/C~ 2~176 sin2~ i ) 0  
A ~ =  si 20 0 cos 20 1o0 0 

(68) 
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However, in the interaction Lagrangian (19), we have, apart from C~, D~ 
• • • 

and E~, further sets of gauge bosons, namely U~, V~, and W~, W ~ F~. 
The set {C.,  Dr,  E~} being an isovector, its components transform, operated 
upon b y t h e  matrix (55) with C.,  / ) .  and /~. regarded as physical gauge 
bosons, as 

C~. = cos 20 C~, - sin 2 0 / ~  

D~ = / )~  (69) 

E~ = -s in  20 C~ + cos 20/~, 

Substituting equation (55) in Lin t and sticking to the usual convention of 
rotating the d and s quarks together with rotation of the /]e and v~ neutrinos, 
we obtain for the terms containing C.,  D .  and E~ the following expression: 

+ - c o s  2 0  

- (dyes + gy~d) sin 20 +/27~/x + ( ~ey~v~ + ~.y~ve) sin 20 

+ (~7~3,~ve - ~7.3,"u,.) cos 20 - O3,~e]L+�89 + d3,"s - g3,"d 

+ �89 + (dy~'d - gy~s) sin 20 

- (dT"s + g3,"d) cos 20 + e3,"u + ( V,~3,"v~ + V.7'~v,,) cos 20 

+ (~,y~v~ - ~ey~v~) sin 20 - ey~/z - f iy~e]L  (70) 

If we identify 0 with the Cabibbo angle 0c, relation (61) is exactly the 
expression one would obtain for this part of the Lint by introducing the 
Cabibbo rotation of d, s; re, v~. quarks and neutrinos given as follows: 

dc =cos  0 d + s i n  Os PeO =cos  0 vc +sin Ov~ (71) 

s c = - s i n O d + c o s O s  V~o=-sinOve+COsOv~ (72) 

At this juncture I note that regarding C. ,  /)~ and /~. as physical gauge 
bosons automatically kept the expression coupled to C. ,  D .  and E~ in Lint 
invariant. The set of particles WS, WS, F~ transform as the generators 
(1/x/2)F~-, (1/x/2)F2, F45, whereas the set W.  +, W~, Fo transform as the 
generators (1/x/-2)F~-, ( 1 / ~ ) F 2 ,  Fo. From equation (5) these generators 
transform as SO(3) vectors with equal norms, i.e., (3/4)1. Hence, recalling 
our choice of the rotation axis to be the y axis, the corresponding SU(2) 
matrices say A and B turn out to be as follows: 

( c o s 0  s in~ )  (73) 
A = B = k _ s i n 0  cos 
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+ . . W~,}, it can be Thus, applying equation (69) to the set {W~.  W~, F~,, o 
"+ W~,F~,  o reexpressed in terms of  the transformed W~, W~, as follows: 

W~, = W~, 

o ~o 2 0 / 3  (74) W.  = cos 20 W~ - s i n  

- o +cos  20/3 F~. = sin 20 W.  

Using (74), it is possible to rewrite the part of the Lin t 

t 0 1 g t  0 g W~J~,(ern)+~(gF~- W.)J~a (75) 

as follows: 

gg' ~V~ J.  (era) -~ F~'~" ,2 (g2+gn)l/2[�89 ) J .3 -gnJ . ( em)]  (76) (g2 + g,2)l/2 

where we have defined 

tan 20 = g'/g (77) 

It is interesting to note that if we identify gg,/(g2+ g,2)1/2 as usual with the 
charge e and rewrite 

20 = Ow (78) 

one can identify W." o with ,A~. and F~.,r with Z.,~ and equation (76) is exactly 
the expression we would obtain if we Cabibbo-rotate the quark d, s and 
the Ve and v. neutrinos. Hence, 0 can be identified with the Cabibbo angle 
0c (Cabibbo, 1963). Thus, from equation (78) we have a result that the 
Weinberg angle is twice the Cabibbo angle, which was already noted 
(Samiullah, 1986) elsewhere. 

• 
In our formalism we are left with two more charged gauge bosons U~ 

and V~. They transform as spinors; thus, applying the transformation (62) 
to U~ and V~, the relevant part of L~.t can be expressed as 

1 ~+ 
~ g U . (  aLy SLC -- 6LT~dLC + ~Ly~eL -- ~uL3'"IZL) + H.C, 

1 ~ +  
- + - ~ g V ~ (  fiL'y~SL C § C-.L'Y~dL r § ~eL]/'~[,.LL "}- ~'u.L'y'~eL) § H . c .  (79) 

which is again the expression one would obtain for this part of the Lint by 
introducing in it the Cabibbo rotation of d, s, and re, v. flavors, respectively, 
as given in equations (71) and (72). 
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Thus, in all cases, we have obtained the exact expressions derivable 
by introducing the Cabibbo rotation of d, s and Pc, V~ flavors. 

Recall equation (56), which can be simplified to read 

P(VeO ~ Vro)  = sin 2 20 s i n 2 ( 1 . 2 7 A m 2 R / E )  (80) 

2 2 where A m  2 = m r - m e  is in units of electron volts squared, E is the neutrino 
energy in megaelectron volts, and R is the distance from the source of 
neutrinos in meters. Baker et  al. (1981) have reported a search for the 
neutrino oscillation at Fermilab. For ( R / E ) . a v  = 0.16 m/MeV, they find that 
the small oscillation probability is given as P(/z ~ e) = 1.3 • 10 -z. Inserting 
these values in (80), we find 

sin(20) Am2-- < 1.6 eV 2 

which for 0 identified with the Cabibbo angle 0c sets an upper limit 
Am2-- < 1.3 eV 2. 

8. DISCUSSION OF RESULTS 

In the present work, on the 0(3)  sector of  our model we have repro- 
duced the usual SO(3) monopole theory together with its triplet of scalars. 
In view of the several possible choices of Higgs direction for spontaneously 
breaking the 0 ( 5 ) x  U(1) symmetry down to the 0(3)  level, the precise 
direction is of extreme importance, as it has a dual function: (1) to leave 
the gauge bosons Cr, D r and E~ massless so that they can be used in 
defining the usual electromagnetic tensor [see equation (60)] and (2) to 
give a constant value to the Higgs triplet ~. From equation (62) it is exactly 
the angle by which a spinor is to be rotated and is identified with the 
Cabibbo angle. Equation (60) plays a crucial role, indicating that W~ has 
to be rotated in the direction of ~, where it acquires a constant value which, 
to fulfill the consistency demand, results in rotating the different structures 
such as isodoublets and isotriplets, etc., of  the theory appropriately, which 
in turn Cabibbo-rotates the quarks d and s along with the neutrinos re, u~,. 
It is only in terms of ~ that we have obtained the monopole field [see 
equation (45)], which shows that the Cabibbo rotation of u, d and re,  V r 

flavors and the neutrino oscillations are triggered by the existence of  a 
monopole in the theory. 

We have two more important by-products of our result, from equation 
(7.15). The Weinberg angle is twice the Cabibbo angle, which is borne out 
by the experimental data, and we have arrived at A t by two alternative 
ways, equations (36) and (74). The former stresses its four-vector aspect, 
the latter its masslessness as a photon. 
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